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Abstract. The recent progress in phenotypic information and machine
learning has led to a remarkable development in the accuracy of binary
seizure detection. Yet the performance of classifying specific seizure types
remains suboptimal due to the limited availability of annotated data
with accurate seizure type labels. Transfer learning is promising to miti-
gate data scarcity to improve classification accuracy on smaller datasets.
However, finding the best transferable model based on the specific train-
ing and testing dataset can be a complex and repetitive process, and a
single-modelled approach may not fully capture the best feature repre-
sentation of the input data. Moreover, genotypic data is often neglected
in previous AI-based seizure detection studies, where analyses like Poly-
genic Risk Scores (PRS) could offer insights into genetic predispositions
to seizures. To mitigate these challenges, we propose a seizure-type clas-
sification framework incorporating a multi-model weighting system de-
signed to assign weights to different models, thus reducing computational
complexity and processing time. In addition, we carry out a PRS anal-
ysis, aiming to bridge the gap between genotypic and phenotypic data,
further enhancing the comprehensiveness and precision of seizure detec-
tion. Our model outperformed similar classifiers by more than 13 - 16%
on the Temple University Hospital EEG Seizure Corpus dataset. This
study represents a pioneering examination of the multi-source transfer
learning framework in the field of type-specific seizure classification.

Keywords: Genomic · Transfer learning · Machine learning · Seizure
genetic

1 Introduction

Seizure, a manifestation of abnormal brain activity, is one condition that de-
mands immediate detection for effective management. Electroencephalogram
(EEG), a form of phenotypic data, is commonly employed for this purpose.Since
the 1970s, artificial intelligence (AI) has substantially explored the connection
between biomedical traits and phenotypes, notably exemplified by the devel-
opment of automated seizure detection (ASD). Despite the recent progress in
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the detection accuracy of standard ASD, difficulties such as detecting the spe-
cific seizure type due to the limitation of data availability and the labelling
issue remain to be solved [10]. To mitigate this, a variety of strategies such as
Deep Learning and Riemann geometry have been introduced for the phenotypic
study of seizure traits [16]. However, conventional methodologies presume that
the training and testing datasets are derived from a uniform distribution, which
might not hold true in real-world conditions. Furthermore, due to limitations in
data collection and labelling processes like time, ethical considerations, and cost
constraints, acquiring source data or target labels sufficient for deep learning
algorithms often poses a challenge in seizure trait studies, leading to potential
issues of overfitting and sampling bias.

To mitigate this problem, transfer learning can be a suitable solution. It
involves leveraging knowledge and models obtained from a source domain to im-
prove performance in a related but distinct target domain [8]. Several transfer
learning methods, such as semi-supervised [5] and model-based transfer learning
[9], have been investigated in phenotypic seizure classification to mitigate the
data scarcity problem. However, in single-model-based seizure classification, due
to the necessity of processing such massive labelled data, the computing complex-
ity and time of finding the best transferable model may be tremendously high,
and the process can be highly repetitive. Thus, using a multi-model network
allows the system to capture multiple aspects of the input data and make more
informed predictions. Therefore, researchers have focused on a practical problem
known as multi-source domain adaptation [4]. This study explores the possibil-
ity of transferring knowledge from multiple source domains to a target domain.
Based on this idea, we propose a framework wherein multiple pre-trained source
models can be transferred and accessed simultaneously.

Moreover, the historical focus of AI research in seizures has predominantly
utilized phenotypic data, with genotypic information often overlooked. This con-
straint can be attributed to the inherent complexity and interpretive challenges
posed by genomic data. Yet, the recent advancements in genomic analysis tools
have enabled a more profound exploration into the genetic aspects of seizures.
One such genomic tool is the Polygenic Risk Score (PRS), which aggregates the
effects of genetic variants to estimate an individual’s genetic susceptibility to
a particular trait or condition [2]. While phenotypic data like EEG recordings
capture the manifestations of seizures, the integration of genotypic data and
tools, such as PRS offers a genetically informed probability that may predispose
an individual to these conditions. Consequently, integrating genotypic data and
PRS into AI research on seizures could significantly augment predictive accuracy
and enable the development of more personalized treatment strategies. As such,
our study aims to fill this gap by proposing a novel framework that integrates
AI models with PRS for enriched and more precise seizure detection,

In light of this, the present paper introduces a novel multi-model framework
that employs ten pre-trained transferable models. Our approach aims to capture
and integrate transferable knowledge from multiple sources, thereby enhancing
the prediction accuracy in the target domain. To complement phenotypic data
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with genotypic information, we incorporate a PRS analysis, designed to bridge
the genotype-phenotype divide in seizure detection. To validate the performance
of the proposed algorithm, we conduct extensive experiments on the largest
publicly available dataset on seizure EEG, the Temple University Hospital EEG
Corpus [12]. By combining AI and polygenic analysis, our study strives to push
the boundaries of current seizure detection methods, offering a more integrated
and precise approach to diagnosing this complex neurological condition.

The contributions of this paper are summarized as follows:

– Amulti-model-based transfer learning approach was applied to capture trans-
ferable information to enhance the performance of the seizure classification
performance. To our best knowledge, this study represents a pioneering ex-
amination of the multi-source domain adaptation in the field of type-specific
seizure classification.

– A novel self-attention (SA) mechanism was designed to assign weight to each
model, picking up the key information extracted from different models. The
classifier developed using the combination of pre-trained networks outper-
formed other machine-learning-based classifiers.

– As an innovative approach to enriching phenotypic data with genotypic in-
formation, we incorporated PRS analysis into seizure detection, bridging the
genotype-phenotype divide.

This manuscript is organized as follows. Section II reviewed the related work
in automated seizure classification, transfer learning, and SA mechanism. Section
III explained the feature extraction, multi-model system, and PRS methods.
Next, section IV discribed the dataset, baseline model, and the results of our
classifiers. The clinical applications and significance were also discussed in section
V. Lastly, a conclusion of this work was drawn in section VI.

2 Related Work

The following areas need to be studied to establish the multi-model seizure
classification system: automated seizure classification, transfer learning of con-
volutional neural networks, and SA mechanism.

2.1 Automated Seizure Classification

Generalized seizures include absence, myoclonic, tonic, clonic, tonic-clonic, and
atonic. In clinical practice, trained individuals evaluate phenotypic and clinical
information to identify seizure types. With the development of AI, the applica-
tion of ASD in medical fields has had significant success. The majority of ASD
applications focus on tonic-clonic seizures, and the classifiers’ outputs are either
binary (normal, ictal), or three-class (normal, interictal, ictal stages) [1]. De-
spite reaching 95% - 100% accuracy in these scenarios, several issues still need
to be solved before clinical deployment. First, a specific type is needed after de-
tecting seizures’ start and end times. Knowing the seizure type is the first step
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of personalized healthcare [10]. Second, the complexity, redundancy and signifi-
cance of the phenotypic features need to be considered, especially in real-world
applications. More importantly, the limited publicly available datasets with a
relatively small number of participants pose the issue of poor performance for
deep learning algorithms. Each step of the automated seizure type classification
must be carefully designed to overcome these issues.

2.2 Transfer Learning of Convolutional Neural Network

Recently, Convolutional Neural Networks (CNN) have demonstrated remarkable
outcomes in seizure classification. Several studies have applied transfer learning
on CNN to mitigate the distribution difference between the source and tar-
get domains of the seizure phenotypic data [7]. Yang et al. [17] applied large-
margin projection combined with Maximum Mean Discrepancy to identify es-
sential knowledge between the source and target domains, resulting in better
performance in seizure detection using EEG signals as the phenotypic data. Fur-
thermore, Jiang et al. [5]adapted domain adaptation with the Takagi-Sugeno-
Kang fuzzy system as the base classifier. The result showed higher classifica-
tion accuracy. From the model-based transfer learning perspective, Raghu et al.
[9] transferred 10 pre-trained CNN models separately with fine-tuning, among
which GoogleNet yielded the highest classification accuracy of 82.85%. However,
for such single-model-based studies, finding the best model can be highly com-
plex and time-consuming. Using a multi-model network allows the system to
capture multiple aspects of the input data and make more informed predictions.
As this paper presents the first study using deep learning for the classification
of multi-class seizure type, our framework was compared with this approach in
the result section.

2.3 Self-attention Mechanism

The concept of SA was initially introduced in the research by [15] and applied
in machine translation. It aimed to capture global input dependencies. In recent
years, it has been applied to the field of seizure classification. Tao et al. [14]
used SA to model long-range dependencies in the phenotypic information and
to weigh the importance of each feature for classification, achieving improved
performance compared to traditional CNNs. Choi et al. [3] combined SA with
a bidirectional gated recurrent unit network for seizure classification. The au-
thors found that the SA mechanism improved the ability of the model to identify
important features in the input signals, leading to improved classification per-
formance. These studies proved that the SA mechanism has the potential to
capture the complex and dynamic patterns of EEG as the phenotypic data in
deep learning models. Inspired by this, we applied the SA mechanism to look
for critical information in multi-model transfer learning.
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3 Proposed Methodology

In this section, we introduce the methodology employed in this study, which
involves pre-processing and feature extraction of the phenotypic data, the im-
plementation of a multi-model weighting system and the calculation of the PRS.

3.1 Phenotypic analysis: Pre-processing and Connectivity Analysis

Due to its exceptional ability to capture real-time brain activity, EEG signal
is selected as the phenotypic data utilized for seizure-type classification in our
proposed framework. The raw data from the Temple University Hospital EEG
Seizure Corpus underwent a sequence of pre-processing stages, including band-
pass filtering and segmentation of seizure and non-seizure events. We also re-
duced the number of channels to optimize the performance of our deep learn-
ing systems, employing both four (T3, F7), (C3, Cz), (O2, P4), (Fp2, F8) and
eight-channel strategies (T3, T5), (F8, T4), (T4, T6), (P3, O1), following the
findings by Shah [11]. As a key part of the data transformation, we implemented
effective connectivity to generate image-based features for the classifiers. For
this, we used Multivariate Auto-Regressive models and linear Kalman filtering
method. The pre-processed recordings were treated as univariate time series,
with consecutive measurements modeled as a weighted linear sum of their previ-
ous values. This approach was extended to multivariate time series in the Multi-
variate Auto-Regressive models. The model order, p, was determined using the
Bayesian-Schwartz’s criterion:

SC(p) = ln[det(V )] +
ln(N) ∗ p ∗ n2

N
(1)

where V is the noise covariance matrix, and N is the total number of the data.
n indicates the number of channels. The normalized Directed Transfer Function
(DTF) represents the ratio between the inflow from the source channel to the
destination channel to the sum of all inflows to this channel. The value of the
normalized DTF is from 0 to 1, where 0 means no influence and 1 means the
maximum influence. The calculation is shown as follows:

γ2
ij(λ) =

(|H2
ij(λ)|2)∑n

m=1(|H2
im(λ)|2)

(2)

where i is the destination channel and j is the source channel that is used to
calculate the influences compared with the total influence from all channels for
both direct and indirect flows. To distinguish between the direct and indirect
transmissions, Partial Directed Coherence (PDC) is utilized to show the direct
relations only in the frequency domain. It is defined as:

π2
ij(λ) =

(|A2
ij(λ)|2)∑n

m=1(|A2
im(λ)|2)

(3)
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This function describes the ratio between outflows from channel j to channel i
to all the outflows from channel j. In this project, PDC and DTF were computed
with the idea of a short-term 1-second window and 25% overlap to address the
immediate direct dynamic frequency domain link between the various time series
and expose the links from one time series to another regardless of the influence
pathway.

3.2 Multi-model Weighting System

A multi-model weighting system is designed to investigate the contribution of
the extracted feature from each model. We introduce it at the end of the output
layer of the pre-trained models. It takes the model’s feature embeddings em
as input and outputs the weights W of all models based on the contribution
of the extracted information. We utilize several paralleled SA mechanisms to
capture the relationships between these embeddings from multiple aspects. A
multi-attention mechanism is used to concatenate the multi- attention’s weight.
As the calculated weight ω now has the same dimension as em, a fully connected
fc layer is introduced at the end to obtain the vector output W , which has 1
single value representing the weight of each model. The structure of the system
is shown in Fig.1.

The SA mechanism is used in deep learning models that compute a set of
attention scores to weigh the importance of different elements when making
predictions [15]. Note that unlike the original SA algorithm proposed in [15], the
Value Weight is not used in this paper as the main purpose of this system is
not to update the original embedding vector, but instead computes and outputs
the models’ weights. The Query (Q) represents the current model that is being
weighted and the Key (K) is the other model (includingQ) that is being weighted
against. Because multiple paralleled SA mechanisms are used, we introduce a
multi-head attention algorithm, shown in Fig. 1 to concatenate the paralleled
outputs into 1 linear vector W , which is the final output of the multi-model
weighting system. Based on the previous experience from [15], the experiment
set h = 2.

The dot product of Q and K is then calculated by Eq.(4).

Sqk = Q ∗KT (4)

where Sqk represents the similarity vector of the current model Q against model
K.
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Fig. 1. The multi-model weighting system consists of multiple paralleled SA mecha-
nisms, which compute the multi-attention weight and a multi-head mechanism that
outputs the single-attention weight. The structure of the multi-head attention mech-
anism concatenates the paralleled outputs into one linear vector W is shown on the
right. In this study, h was set as 2

The obtained score S is then normalized using SoftMax function:

σ(Si) =
eSi∑n
j=1 e

Sj
(5)

where σ(Si) represents the normalized score of the ith model, n is the length of
the feature embedding of Qi. The final output of the SA mechanism ω is then
computed by scaling σ(Si) as shown below:

ω(Si) =
σ(Si)√

dk
(6)

where dk is the dimension of the vector K. The final output ω is scaled by the
square root of dk to prevent the attention scores from becoming too large and
overwhelming the other components of the model.

3.3 Genotypic Analysis: PRS Calulation

Our seizure-type classification framework integrates genotypic data through a
PRS analysis. In this study, we focused on 29 Single Nucleotide Polymorphisms
(SNPs) derived from the NHGRI-EBI GWAS Catalog [13]. Linkage disequilib-
rium metrics (0.4, 0.6, 0.8) and significance thresholds (Pvalue = 0.5, 0.05,
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5× 10−4) were employed to further refine this selection. The chosen SNPs were
independently significant, presenting low collinearity (< 0.05) and maintaining a
distance of more than 2000 kilobases apart. We estimated the squared correlation
coefficient (r2) among these SNPs, utilizing genotype data from the summary
statistics to understand their genetic relationship and potential impact on seizure
predispositions. These analyses were executed using the PLINK software pack-
age, version 1.9. Before proceeding to PRS analysis, we first conducted rigorous
quality control checks on the genotype data. We checked for missing data and ex-
cluded SNPs with a high missingness rate. Additionally, we tested for deviations
from Hardy-Weinberg equilibrium to identify and exclude potentially erroneous
genotype calls. Subsequently, we constructed weighted PRS for each participant
according to Eq.7, calculated as the weighted sum of risk alleles, each multiplied
by its corresponding trait-specific weight. The PRS was normalized to a mean of
0 and a standard deviation of 1, enabling reporting of odds ratios per standard
deviation increase in PRS.

PRS(k) =

N∑
j

βj ∗ dosagejk (7)

where k represents an individual sample, N is the total number of SNPs, βj is
the effect size of variant j and dosagejk indicates the number of copies of SNP
j in the genotype of individual k.

4 Experiments

In this section, we introduce the phenotypic and genotypic data used in this
study and list the parameter, baseline models and seizure classification results.

4.1 Phenotypic and Genotypic Dataset

The Temple University Hospital EEG Seizure Corpus version 2.0.0 [12] was
used as the phenotypic data in this study. It contains EEG data with sam-
pling frequency of 250 Hz, and the standard 10-20 system was used as the sen-
sor placement guideline. Two annotation files were created for each data file
to demonstrate the seizure types, channel indices, and the start/end time of
seizure events. The seizure types are determined by certified professionals with
both phenotypic and clinical information for absence, complex partial, simple
partial, tonic-clonic, and tonic seizures, phenotype only for focal non-specific
and generalized non-specific seizures. Due to the limited number of phenotypic
information for atonic and myoclonic seizures, these two types are excluded from
this work. It is worth noting that the clinical information is not provided in the
public dataset. The issue of unmatched resources between the neurophysiologists
who labelled the seizure events and the proposed framework is further addressed
in the classifier design and the clinical significance of this framework.
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The genotypic data used in this study was obtained from the Medical Genome
Reference Bank [6]. It is a high-quality genomic database comprising sequence
data from 4,011 healthy older individuals. This data, stored in the Variant Call
Format, provides an industry-standard notation for storing gene sequence varia-
tions. Variant Call Format files are an efficient and compact way of storing and
sharing genomic data, accommodating from SNPs to large structural variants,
along with rich annotations. Additionally, the seizure summary statistics, which
provides the association strengths and significances of different genetic variants
to seizure incidents, was downloaded from the NHGRI-EBI GWAS Catalog [13].

4.2 Parameter Setup and Baseline Methods

Two classifiers were developed to verify the seizure type classification framework:
the three-class (FN, GN and normal) and the six-class (AB, CP, SP, TC, TN
and normal). The experiment was conducted using a LR decay with a staring
LR of 1e− 2, the batch size was set to 32 and the epoch was set as 50. Based on
the result from [9], we selected GooogleNet as the baseline model when running
the single-model task. To compare the performance of the phenotypic features,
short-time Fourier transform (STFT) [18] was used as the baseline as it is a
common imaged-based feature in CNN-related EEG applications.

4.3 Seizure Classification Results

Table 1. three-class seizure type classification results using the single-model and multi-
model system, key values are highlighted in bold for emphasis.

Seizure Type
Features Precision Recall F1-score

Single model Multi-model Single model Multi-model Single model Multi-model

FN
STFT 0.6906 0.7810 0.8298 0.8120 0.7562 0.7979
8-Ch connectivity 0.7969 0.7803 0.8266 0.9510 0.8730 0.8435
4-Ch connectivity 0.9293 0.9862 0.9730 0.9235 0.9177 0.9561

GN
STFT 0.7827 0.7931 0.6293 0.789 0.6922 0.7888
8-Ch connectivity 0.8215 0.8893 0.7817 0.7563 0.7961 0.8149
4-Ch connectivity 0.9385 0.9282 0.9293 0.9768 0.9288 0.9567

Normal
STFT 1 1 1 1 1 1
8-Ch connectivity 1 1 1 1 1 1
4-Ch connectivity 0.9797 0.9802 1 1 0.9843 0.9977

The results indicate that eight out of nine F1-Score pairs showed improved
or maintained performance in three-class seizure classification using our multi-
model system. It improved FN and GN seizure F1-scores by 3.84% and 2.79%
respectively, using 4-channel features. Similarly, 15 out of 18 F1-scores were
sustained or boosted in six seizure-type tasks. The optimal feature shown in
this experiment is the four-channel connectivity images, presenting 98.62% and
92.82% precision with 0.956 F1-score in Table 1 for both focal and generalized
seizures, demonstrating a balanced precision and sensitivity of the classifier. The
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STFT’s performance for tonic seizures in the six-type classifier shows imbalances
due to fewer participant numbers, resulting in low sensitivity. Meanwhile, the
multi-model approach with four-channel connectivity achieves 100% precision,
recall, and F1-score, demonstrating stability even with smaller sample classes.
Our method surpasses a similar classifier [9] where tonic seizures had the lowest
accuracy. The multi-model approach enhances the F1 score substantially for both
STFT and connectivity features. Using ten weighted pre-trained networks, we
see an approximately 50% recall increase for STFT, 15% precision rise with eight
channels, and around 45% F1-score improvement with four channels. This illus-
trates that our system effectively uses model-extracted key information, boosting
detection performance and robustness.

Table 2. six-class seizure type classification results using the single-model and multi-
model system, the key improvements and values are highlighted in bold for emphasis.

Seizure Type
Features Precision Recall F1-score

Single model Multi-model Single model Multi-model Single model Multi-model

AB
STFT 1 1 0.9910 0.9060 0.9582 0.9544
8-Ch connectivity 0.8700 0.9139 1 1 0.9305 0.9584
4-Ch connectivity 0.9514 1 1 1 0.9841 1

CP
STFT 0.8117 0.9720 0.9724 0.9474 0.8889 0.9681
8-Ch connectivity 1 0.9340 0.9564 0.9581 0.9794 0.9307
4-Ch connectivity 1 1 1 1 1 1

SP
STFT 1 0.7727 0.965 1 0.9596 0.8721
8-Ch connectivity 0.9591 0.9518 0.9584 0.9583 0.9574 0.9595
4-Ch connectivity 0.9538 1 0.9564 0.9594 0.9566 0.9790

TC
STFT 0.7543 0.8341 0.5810 0.8396 0.6160 0.8377
8-Ch connectivity 1 1 0.9283 0.8394 0.9620 0.9104
4-Ch connectivity 1 0.9234 0.9235 1 0.96270 0.9644

TN
STFT 1 1 0.2568 0.7541 0.4110 0.8603
8-Ch connectivity 0.7158 0.8644 0.6283 0.7551 0.6720 0.8620
4-Ch connectivity 0.8800 1 0.8804 1 0.8819 1

The three-class classifier using four-channel connectivity and ten pre-trained
networks achieved the best performance with an average accuracy of 96.33%.
With only four channels (eight electrodes), this classifier could be used in emer-
gencies for efficient patient triage. Using the same configuration, the six-class
classifier delivered 99.00% average accuracy, surpassing the highest accuracy
from a similar work by over 13-16% [9].

5 Discussion

This result confirms that multi-model transfer learning is an excellent solution
to the small dataset challenge often faced in clinical applications. Both classifiers
exhibited exceptional precision and recall using the transfer learning approach,
showing that transferring knowledge from large datasets to epileptic seizures can
achieve excellence in detection tasks in clinical settings. Moreover, In the pheno-
typic dataset, seizure types were labelled using both EEG and clinical data, yet
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our framework solely relied on phenotypic data. Despite a relatively small par-
ticipant count, this finding suggests that with appropriate processing techniques
and deep learning, an accurate differentiation of epileptic seizure types is possible
with phenotypic data only. This could be particularly useful in situations where
clinical data isn’t readily available, such as telehealth in remote areas or rescue
missions in challenging conditions. To capitalize on our classifier system in diag-
nosing various seizure types, we further expanded our research to target stroke
epilepsy, a subtype posing complex diagnostic challenges. Stroke-induced seizures
have complex mechanisms, making stroke epilepsy difficult to distinguish from
other seizure types clinically, thereby complicating patient management. This
underpins the necessity for better diagnostic tools to assist clinicians in accu-
rately diagnosing stroke epilepsy. While age is a known risk factor for stroke and
subsequent seizures, genetic factors introduce considerable risk variation among
individuals of the same age group. Hence, a more comprehensive approach con-
sidering genetic predisposition is vital. To address this challenge, we conducted
a PRS analysis, identifying 371 individuals presenting a heightened genetic risk
for seizures. This approach of using genetic risk profiling serves as a proactive
screening method for individuals at elevated risk for stroke epilepsy. When inte-
grated with our high-performing machine learning model as a diagnostic tool, we
provide a comprehensive solution promising enhanced diagnostic accuracy and
improved patient outcomes, particularly for older individuals at risk of stroke-
induced seizures. Given the precision of this approach, it has significant potential
to aid in clinical decision-making and early intervention strategies.

6 Conclusion and Future Work

This study explores the potential of enhancing seizure classification by inte-
grating multi-model transfer learning and genotypic data analysis. Our unique
approach amalgamates multiple sources of transferable knowledge, effectively
bridging the genotype-phenotype divide in seizure detection. Using four-channel
EEG features with a ten-network model, we achieved 96.33% and 99.00% ac-
curacy for the three-type and six-type classifiers with over 0.95 F1-score. This
work improved the accuracy and robustness of the seizure-type classifiers com-
pared with others’ work. In the future, expanding the knowledge base by adding
genetic data in this multi-source domain adaptation framework can potentially
further enhance the performance.
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